对偶空间和对偶基

作者:Hua Xiao
链接:https://www.zhihu.com/question/38464481/answer/132756971
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

“对偶空间”是“线性空间”,它里面的元素是“线性映射”。

仅仅是这句话就足以让许多人一头雾水了。为了理解它,我们先说说“集合”:所有的“线性空间”都是“集合”,然而“集合”未必都是“线性空间”。比如{帽子,足球,鱼香肉丝}这样的集合就很可能不是线性空间。那么问题来了——

什么样的集合,才可以被称作是线性空间呢?

答:如果某集合对加法和数乘封闭,也就是说
(1) 任意一个元素 加上 任意一个元素 结果仍然在集合里;
(2) 任意一个数 乘以 任意一个元素 结果仍然在集合里。
那这个集合就是一个线性空间。

比如,{0}这个集合只有一个元素,而且——
(1) 0 加上0,结果是0,在集合内;
(2) 任何数 乘以 0,结果是0,也在集合内。
所以{0}是一个线性空间。

而{0,1,2}这个集合,就不是一个线性空间。因为1加上2,结果是3, 而3却不在集合内。
如果你能够在{0,1,2}这个集合上,自己定义一种特殊的“加法”和“数乘”,在——满足交换律、结合律、乘法分配律,具备加法恒等元、加法逆、乘法恒等元——的前提下,还能使得{0,1,2}中所有的元素满足对加法和数乘封闭的条件,那么{0,1,2}就可以被看做是线性空间。当然,你也看出来了,这非常的困难。事实上,线性空间是极其特殊的集合。

我们已经搭好了“线性空间”的概念,它就像游戏的场景,有了它我们才可以尽情的玩耍。下面来看一个更有意思的东西——线性映射。

我们继续用{0}这个最简单的线性空间,
然后给出一个线性映射——把{0}中的所有元素(也就是0啦)乘以1
0\rightarrow 0
然后又给出一个线性映射——把{0}中的所有元素乘以2
0\rightarrow 0
然后又双叒叕给出一个线性映射——把{0}中的所有元素乘以3
0\rightarrow 0
……

我们很快就发现,{0}这个线性空间上的线性映射竟然有无穷多个!如果我们这无穷多个映射放在一个集合里:{线性映射一,线性映射二,线性映射三…… },那么,这个由“线性映射”构成的集合,是否也是一个线性空间?

答案竟然是yes!而且它就是{0}的对偶空间

等一下——
如果这个集合是个线性空间,那么根据上文,它必须对加法和数乘封闭。可是数字之间相加,比如1+2,很好理解,线性映射也能相加吗?怎么加,结果是什么?

注意,上文中提到:
……你能自己定义一种特别的“加法”和“数乘”,在——满足交换律、结合律、乘法分配律,具备加法恒等元、加法逆、乘法恒等元——的前提下……
也就是说,我们可以在线性映射的集合上定义“线性映射的加法”!只要能满足那些要求就可以了!
下面用个例子来描述一下“线性映射之间的加法”:
线性映射二:x\rightarrow 2x , 线性映射三:x\rightarrow 3x,那么:
线性映射二 加上 线性映射三等于 一个新的线性映射:x\rightarrow 2x+3x
不难发现,这个定义是满足加法的那一票要求的。有了加法的定义,我们乘胜追击,再用个例子来描述一个数和线性映射相乘,
线性映射一:x\rightarrow x , 那么:
3 乘以 线性映射一等于 一个新的线性映射:x\rightarrow 3x

然后就可以发现,{0}上的所有线性映射的集合:{线性映射一,线性映射二,线性映射三…… }
对加法和数乘封闭,也就是说,它也是一个线性空间,于是我们把它叫做{0}的对偶空间。

再回头看看本回答的第一句话:“对偶空间”是“线性空间”,它里面的元素是“线性映射”,这句话里其实还隐含了一个信息:我们在对偶空间里,定义了线性映射的加法以及数乘。

最后,更准确的说,对偶空间里的元素是“线性泛函”(linear functional),这是一种特殊的线性映射。


对偶空间V^*的想法本身是很自然的,就是\dim V=n的线性空间V上全体线性函数组成的(在通常的函数加和乘下)线性空间。这个空间其实就是全体  1\times n 的矩阵而已。那么自然的,对偶空间就是一个n维的线性空间。注意在V的一组基e_i下,我们给出的任意一个赋值f(e_i)=\beta_i都唯一地确定了一个线性函数f(x=\sum \alpha_i e_i)=\sum \alpha_i \beta_i。那么自然地诱导出V^*的一组基e^i(e_j)=\delta_{i,j},这就称作e_j的对偶基(互相对偶)。


作者:陆葳蕤
链接:https://www.zhihu.com/question/38464481/answer/137481200
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


### 对偶集合子空间的数学定义 对偶集合子空间是一个抽象概念,通常出现在泛函分析、线性代数以及更广泛的现代数学分支中。它涉及向量空间及其对偶空间之间的关系。 #### 定义 设 \( V \) 是一个有限维或无限维的向量空间,其上的对偶空间记作 \( V^* \),由所有从 \( V \) 到标量域(通常是实数或复数)的线性函数组成。如果给定 \( W \subseteq V \),则可以通过如下方式定义 \( W \) 的对偶子空间: \[ W^\perp = \{ f \in V^* : f(w) = 0, \forall w \in W \} \] 这里,\( W^\perp \) 表示的是那些在 \( W \) 上恒等于零的所有线性泛函组成的集合[^1]。 对于无穷维情况下的具体性质可能更加复杂,涉及到拓扑结构等因素的影响。 ### 应用场景 #### 场景一:量子力学中的态矢量与算符 在量子力学框架下,希尔伯特空间扮演着至关重要的角色。其中任意状态都可以看成该空间内的某个矢量;而测量过程对应于特定类型的线性变换——自伴算符的作用效果上。此时,考虑某组正交底所张成的空间与其相应的对偶空间之间存在着密切联系,这种关联有助于深入理解可观测物理量如何通过投影操作实现数值化表达。 #### 场景二:模糊分类问题处理 当面对诸如模式识别等领域里的不确定性数据时,利用于隶属度函数构建起来的一系列规则来进行决策制定成为一种有效手段之一。在此过程中,我们可以借助上述提到过的关于滤子理想的相关理论成果进一步优化算法设计思路,从而提高最终结果准确性的同时也增强了系统的鲁棒性能表现水平[^2]。 ```python import numpy as np def dual_subspace_projection(matrix_W): """ 计算矩阵形式表示的子空间 W 的对偶子空间投影 参数: matrix_W (numpy.ndarray): 子空间 W 中一组向量构成的列向量组合而成的矩阵 返回: numpy.ndarray: 投影到 W 垂直补空间的操作矩阵 P_perpendicular """ Q, R = np.linalg.qr(matrix_W.T) projection_matrix = np.eye(Q.shape[0]) - Q @ Q.T return projection_matrix ``` 以上代码片段展示了如何计算给定子空间的一个标准正交础之后得到垂直方向上的投影运算器。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值